p-group, metabelian, nilpotent (class 2), monomial
Aliases: C42.94C23, C24.140C23, C23.141C24, C22.103C25, C4.1582+ 1+4, D42⋊16C2, (D4×Q8)⋊21C2, C4⋊Q8⋊94C22, D4⋊14(C4○D4), D4⋊5D4⋊23C2, Q8⋊5D4⋊20C2, D4○2(C4.4D4), (C4×D4)⋊51C22, (C2×C4).93C24, (C4×Q8)⋊50C22, C4⋊D4⋊29C22, C4⋊C4.497C23, (C2×C42)⋊65C22, C22⋊Q8⋊37C22, C22≀C2⋊11C22, C22.32C24⋊7C2, (C2×D4).476C23, C4.4D4⋊30C22, C22⋊C4.27C23, (C2×Q8).455C23, C42.C2⋊76C22, (C22×Q8)⋊35C22, C42⋊C2⋊44C22, C42⋊2C2⋊39C22, C22.11C24⋊22C2, C22.45C24⋊9C2, C4⋊1D4.188C22, (C22×C4).373C23, C2.40(C2×2+ 1+4), C2.34(C2.C25), C22.26C24⋊43C2, (C22×D4).430C22, C22.D4⋊54C22, C22.49C24⋊15C2, C22.36C24⋊17C2, C22.50C24⋊25C2, C23.36C23⋊34C2, C22.53C24⋊16C2, (C4×C4○D4)⋊33C2, C4⋊C4○(C42.C2), C4.276(C2×C4○D4), (C2×D4)○(C4.4D4), (C2×C4.4D4)⋊56C2, (C2×C4○D4)⋊36C22, C22⋊C4○(C4.4D4), C22.42(C2×C4○D4), C2.59(C22×C4○D4), (C2×C22⋊C4)⋊52C22, SmallGroup(128,2246)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C22.103C25
G = < a,b,c,d,e,f,g | a2=b2=c2=d2=f2=1, e2=a, g2=b, ab=ba, dcd=gcg-1=ac=ca, fdf=ad=da, ae=ea, af=fa, ag=ga, ece-1=bc=cb, bd=db, be=eb, bf=fb, bg=gb, cf=fc, de=ed, dg=gd, ef=fe, eg=ge, fg=gf >
Subgroups: 916 in 571 conjugacy classes, 390 normal (50 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C2×C4, C2×C4, C2×C4, D4, D4, Q8, C23, C23, C23, C42, C42, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×D4, C2×Q8, C2×Q8, C2×Q8, C4○D4, C24, C2×C42, C2×C42, C2×C22⋊C4, C42⋊C2, C42⋊C2, C4×D4, C4×D4, C4×Q8, C4×Q8, C22≀C2, C4⋊D4, C4⋊D4, C22⋊Q8, C22⋊Q8, C22.D4, C4.4D4, C4.4D4, C42.C2, C42⋊2C2, C4⋊1D4, C4⋊Q8, C4⋊Q8, C22×D4, C22×Q8, C2×C4○D4, C2×C4○D4, C4×C4○D4, C22.11C24, C2×C4.4D4, C23.36C23, C23.36C23, C22.26C24, C22.32C24, C22.36C24, D42, D4⋊5D4, Q8⋊5D4, D4×Q8, C22.45C24, C22.49C24, C22.50C24, C22.53C24, C22.103C25
Quotients: C1, C2, C22, C23, C4○D4, C24, C2×C4○D4, 2+ 1+4, C25, C22×C4○D4, C2×2+ 1+4, C2.C25, C22.103C25
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)
(1 15)(2 16)(3 13)(4 14)(5 19)(6 20)(7 17)(8 18)(9 25)(10 26)(11 27)(12 28)(21 29)(22 30)(23 31)(24 32)
(1 8)(2 19)(3 6)(4 17)(5 16)(7 14)(9 29)(10 22)(11 31)(12 24)(13 20)(15 18)(21 25)(23 27)(26 30)(28 32)
(1 23)(2 24)(3 21)(4 22)(5 26)(6 27)(7 28)(8 25)(9 18)(10 19)(11 20)(12 17)(13 29)(14 30)(15 31)(16 32)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(9 11)(10 12)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)
(1 19 15 5)(2 20 16 6)(3 17 13 7)(4 18 14 8)(9 30 25 22)(10 31 26 23)(11 32 27 24)(12 29 28 21)
G:=sub<Sym(32)| (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,15)(2,16)(3,13)(4,14)(5,19)(6,20)(7,17)(8,18)(9,25)(10,26)(11,27)(12,28)(21,29)(22,30)(23,31)(24,32), (1,8)(2,19)(3,6)(4,17)(5,16)(7,14)(9,29)(10,22)(11,31)(12,24)(13,20)(15,18)(21,25)(23,27)(26,30)(28,32), (1,23)(2,24)(3,21)(4,22)(5,26)(6,27)(7,28)(8,25)(9,18)(10,19)(11,20)(12,17)(13,29)(14,30)(15,31)(16,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (9,11)(10,12)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,19,15,5)(2,20,16,6)(3,17,13,7)(4,18,14,8)(9,30,25,22)(10,31,26,23)(11,32,27,24)(12,29,28,21)>;
G:=Group( (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,15)(2,16)(3,13)(4,14)(5,19)(6,20)(7,17)(8,18)(9,25)(10,26)(11,27)(12,28)(21,29)(22,30)(23,31)(24,32), (1,8)(2,19)(3,6)(4,17)(5,16)(7,14)(9,29)(10,22)(11,31)(12,24)(13,20)(15,18)(21,25)(23,27)(26,30)(28,32), (1,23)(2,24)(3,21)(4,22)(5,26)(6,27)(7,28)(8,25)(9,18)(10,19)(11,20)(12,17)(13,29)(14,30)(15,31)(16,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (9,11)(10,12)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,19,15,5)(2,20,16,6)(3,17,13,7)(4,18,14,8)(9,30,25,22)(10,31,26,23)(11,32,27,24)(12,29,28,21) );
G=PermutationGroup([[(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32)], [(1,15),(2,16),(3,13),(4,14),(5,19),(6,20),(7,17),(8,18),(9,25),(10,26),(11,27),(12,28),(21,29),(22,30),(23,31),(24,32)], [(1,8),(2,19),(3,6),(4,17),(5,16),(7,14),(9,29),(10,22),(11,31),(12,24),(13,20),(15,18),(21,25),(23,27),(26,30),(28,32)], [(1,23),(2,24),(3,21),(4,22),(5,26),(6,27),(7,28),(8,25),(9,18),(10,19),(11,20),(12,17),(13,29),(14,30),(15,31),(16,32)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(9,11),(10,12),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32)], [(1,19,15,5),(2,20,16,6),(3,17,13,7),(4,18,14,8),(9,30,25,22),(10,31,26,23),(11,32,27,24),(12,29,28,21)]])
44 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | ··· | 2N | 4A | ··· | 4N | 4O | ··· | 4AC |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4○D4 | 2+ 1+4 | C2.C25 |
kernel | C22.103C25 | C4×C4○D4 | C22.11C24 | C2×C4.4D4 | C23.36C23 | C22.26C24 | C22.32C24 | C22.36C24 | D42 | D4⋊5D4 | Q8⋊5D4 | D4×Q8 | C22.45C24 | C22.49C24 | C22.50C24 | C22.53C24 | D4 | C4 | C2 |
# reps | 1 | 1 | 2 | 2 | 3 | 1 | 4 | 2 | 1 | 4 | 2 | 1 | 4 | 2 | 1 | 1 | 8 | 2 | 2 |
Matrix representation of C22.103C25 ►in GL6(𝔽5)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
4 | 1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 2 | 2 | 0 |
0 | 0 | 3 | 0 | 2 | 1 |
0 | 0 | 0 | 0 | 3 | 4 |
0 | 0 | 0 | 0 | 3 | 2 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 1 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 4 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 4 |
2 | 3 | 0 | 0 | 0 | 0 |
4 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 0 | 0 | 0 |
0 | 0 | 0 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 0 |
0 | 0 | 0 | 0 | 0 | 2 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 2 |
0 | 0 | 0 | 1 | 0 | 2 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
3 | 0 | 0 | 0 | 0 | 0 |
0 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 1 | 0 |
0 | 0 | 1 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 4 | 1 |
G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[4,0,0,0,0,0,1,1,0,0,0,0,0,0,0,3,0,0,0,0,2,0,0,0,0,0,2,2,3,3,0,0,0,1,4,2],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,1,1,4,4,0,0,1,0,0,0,0,0,0,0,0,4],[2,4,0,0,0,0,3,3,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,2],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,2,2,0,4],[3,0,0,0,0,0,0,3,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,1,1,4,4,0,0,0,0,0,1] >;
C22.103C25 in GAP, Magma, Sage, TeX
C_2^2._{103}C_2^5
% in TeX
G:=Group("C2^2.103C2^5");
// GroupNames label
G:=SmallGroup(128,2246);
// by ID
G=gap.SmallGroup(128,2246);
# by ID
G:=PCGroup([7,-2,2,2,2,2,-2,2,477,1430,184,570,1684,172]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=f^2=1,e^2=a,g^2=b,a*b=b*a,d*c*d=g*c*g^-1=a*c=c*a,f*d*f=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,e*c*e^-1=b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*f=f*c,d*e=e*d,d*g=g*d,e*f=f*e,e*g=g*e,f*g=g*f>;
// generators/relations